Relevance Feedback for Keyword and Visual Feature-Based Image Retrieval
نویسندگان
چکیده
In this paper, a relevance feedback scheme for both keyword and visual feature-based image retrieval is proposed. For each keyword, a statistical model is trained offline based on visual features of a small set of manually labeled images and used to propagate the keyword to other unlabeled ones. Besides the offline model, another model is constructed online using the user provided positive and negative images as training set. Support vector machines (SVMs) in the binary setting are adopted as both offline and online models. To effectively combine the two models, a multi-model query refinement algorithm is introduced. Furthermore, an entropy-based active learning strategy is proposed to improve the efficiency of relevance feedback process. Experimental results on a database of 10,000 general-purpose images demonstrate the effectiveness of the proposed relevance feedback scheme.
منابع مشابه
Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کاملبازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای
Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...
متن کاملروشی برای بازخورد ربط براساس بهبود تابع شباهت در بازیابی تصویر بر اساس محتوا
In content based image retrieval systems, the suitable visual features are extracted from images and stored in the feature database Then the feature database are searched to find the most similar images to the query image. In this paper, three types of visual features by 270 components were used for image indexing. Here, we use a weighted distance for similarity measurement between two images....
متن کاملManifold-Ranking-Based Keyword Propagation for Image Retrieval
In this paper, a novel keyword propagation method is proposed for image retrieval based on a recently developed manifold-ranking algorithm. In contrast to existing methods which train a binary classifier for each keyword, our keyword model is constructed in a straightforward manner by exploring the relationship among all images in the feature space in the learning stage. In relevance feedback, ...
متن کاملEdge/Structural Features for Content Based Image Retrieval
This paper proposes structural features for content-based image retrieval (CBIR), especially edge/structure features extracted from edge maps. The feature vector is computed through a “Water-Filling Algorithm” applied on the edge map of the original image. The purpose of this algorithm is to efficiently extract information embedded in the edges. The new features are more generally applicable th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004